viernes, 16 de marzo de 2018

Acción de las hormonas


La respuesta celular a una hormona depende tanto de la hormona como de la célula diana. Varias células diana responden de un modo diferente a la misma hormona. La insulina, por ejemplo, estimula la síntesis de glucógeno en las células hepáticas y la síntesis de triglicéridos en los adipocitos. Con frecuencia, la respuesta a una hormona es la síntesis de nuevas moléculas. Otros efectos hormonales son: producir cambios en la permeabilidad de la membrana de la célula diana, estimular el transporte de una sustancia dentro o fuera de la célula diana, alterar la velocidad de reacciones metabólicas específicas o causar la contracción del músculo liso o cardíaco. En parte, estos efectos variados de las hormonas son posibles debido a que hay varios mecanismos diferentes de acción hormonal. 

Las hormonas, casi de modo invariable, se combinan primero con receptores
hormonales situados en la superficie o en el interior de las células diana. Una célula puede tener simultáneamente receptores en la membrana celular y en el citoplasma. Asimismo una célula puede disponer de diversos receptores para un tipo de hormona, por ejemplo, varios receptores de membrana para diversas hormonas peptídeas. La combinación de hormona y receptor suele iniciar una cascada de reacciones en la célula. Cada receptor suele ser muy específico para una hormona determinada. Los tejidos diana que se ven afectados por una hormona son los que contienen los receptores específicos para esta hormona.

ACTIVACIÓN DE RECEPTORES INTRACELULARES
Las hormonas esteroides y las tiroideas (tiroxina y triyodotironina) pasan fácilmente a través de las membranas plasmáticas porque son liposolubles. Una vez que ha entrado en la célula, la hormona se une a/ y activa un receptor intracelular. En el caso de las hormonas esteroides, sus receptores están en el citoplasma, son receptores citoplasmáticos, y una vez la hormona se une a su receptor, el complejo hormona-receptor penetra en el núcleo y actúa sobre la expresión genética, es decir, se ponen en marcha o se detienen genes específicos del ADN nuclear. Cuando el ADN es trascrito, nuevas formas de ARN mensajero dejan el núcleo y entran en el citoplasma. Allí dirigen la síntesis de nuevas proteínas, usualmente enzimas, en los ribosomas, que causan las respuestas fisiológicas que son características de esa hormona. Hay que señalar que el complejo hormona-receptor puede tener efectos ya en el citoplasma, independientes de los efectos producidos en el núcleo celular. En el caso de las hormonas tiroideas, sus receptores están en el núcleo, son
receptores nucleares que se unen al ADN en la región promotora de genes regulados por dichas hormonas. De modo que cuando las hormonas tiroideas entran en el núcleo, se unen a sus receptores y promueven la trascripción de un gran número de genes codificadores de un amplio rango de proteínas.

ACTIVACIÓN DE RECEPTORES DE MEMBRANA PLASMÁTICA
La adrenalina, noradrenalina, péptidos y proteínas no son liposolubles y, por tanto, no pueden pasar a través de la membrana celular. Los receptores de estas hormonas hidrosolubles se encuentran en la superficie externa de la membrana plasmática. Ya que cada una de estas hormonas solo puede dar su mensaje a la
membrana plasmática, se la llama primer mensajero. Pero se necesita un segundo mensajero para trasladar el mensaje dentro de la célula donde tienen lugar las respuestas hormonales. Hay diversos segundos mensajeros como el AMP cíclico, el calcio o el inositol trifosfato. Una hormona puede usar más de un segundo mensajero. El segundo mensajero mejor conocido es el AMP cíclico (AMPc). Al unirse una
hormona (primer mensajero) a su receptor de membrana, se activan proteínas reguladoras unidas a la membrana, las proteínas G, que, a su vez, activan moléculas de adenil ciclasa, enzima situado en la superficie interna de la membrana que entonces sintetiza AMP cíclico a partir del ATP en el citoplasma celular. El AMP cíclico actúa como segundo mensajero pero no produce directamente una respuesta fisiológica. Lo que hace es activar uno o más enzimas  llamados colectivamente proteínas quinasas que pueden estar libres en el citoplasma o unidos a la membrana plasmática. Las proteínas quinasas son enzimas fosforiladores, lo que significa que extraen un grupo fosfato del ATP y lo añaden a una proteína, que suele ser un enzima. La fosforilación activa unos enzimas e inactiva otros. El resultado de fosforilar un enzima particular puede ser la
regulación de otros enzimas, la síntesis de proteínas o el cambio en la permeabilidad de la membrana plasmática, entre otros efectos. Existen diferentes proteína qinasas dentro de diferentes células diana y dentro de diferentes organelas de la misma célula. Así, una proteína quinasa podría estar involucrada en la síntesis de glucógeno, otra en el catabolismo de lípidos, otra en la síntesis proteica etc. Por ejemplo, la elevación de AMP cíclico provoca que en los adipocitos se rompan los triglicéridos y se liberen ácidos grasos más rápidamente. Tras un breve período de tiempo, un enzima llamado fosfodiestarasa inactiva el AMP cíclico. De este modo la respuesta celular termina hasta que nueva hormona se una a los
receptores de la membrana. Las hormonas que se unen a receptores de la membrana pueden inducir sus efectos a muy bajas concentraciones porque inician una cascada, o reacción en cadena, de efectos. Cada paso en la cadena multiplica o amplifica el efecto inicial. Es lo que se llama amplificación de los efectos hormonales. Por ejemplo, cuando una sola molécula de adrenalina se une a su receptor en un hepatocito, puede activar unas cien moléculas de proteína G. A su vez, cada proteína G activa una molécula de adenil ciclasa. Si cada adenil ciclasa produce unos mil AMP cíclicos, entonces 100000 de estos segundos mensajeros serán liberados dentro de la célula. Cada AMP cíclico puede activar una proteína quinasa que, a su vez, puede actuar sobre cientos o miles de moléculas de sustrato. Algunas de las quinasas fosforilan y activan un enzima clave para el catabolismo del glucógeno. El resultado final de la unión de la adrenalina a su receptor en un hepatocito, es la ruptura de millones de moléculas de glucógeno a glucosa.

INTERACCIONES HORMONALES
La respuesta de una célula diana a una hormona depende de la concentración de la hormona y del número de receptores. Pero también es importante el modo en que las hormonas interaccionan con otras hormonas. Hay varios tipos de interacción:
• Efecto permisivo, el efecto de una hormona sobre una célula diana requiere una exposición previa o simultánea a otra u otras hormonas. Por ejemplo, un aumento de estrógenos puede dar lugar a un aumento en el número de receptores de progesterona. Ambas hormonas preparan el útero para la posible implantación de un zigoto o huevo fertilizado
• Efecto sinérgico, dos o más hormonas complementan sus respectivas acciones y ambas son necesarias para conseguir la respuesta hormonal total. Por ejemplo, la producción, secreción y salida de leche por las glándulas mamarias requieren el efecto sinérgico de estrógenos, progesterona, prolactina y oxitocina
• Efecto antagonista, el efecto de una hormona sobre una célula diana es contrarrestado por otra hormona. Un ejemplo es la insulina que desciende los niveles de glucosa en sangre y el glucagón, que hace lo contrario.

No hay comentarios.:

Publicar un comentario